(1-x)(2-x)(115)=(2x)^2

Simple and best practice solution for (1-x)(2-x)(115)=(2x)^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1-x)(2-x)(115)=(2x)^2 equation:



(1-x)(2-x)(115)=(2x)^2
We move all terms to the left:
(1-x)(2-x)(115)-((2x)^2)=0
determiningTheFunctionDomain (1-x)(2-x)115-2x^2=0
We add all the numbers together, and all the variables
-2x^2+(-1x+1)(-1x+2)115=0
We multiply parentheses ..
-2x^2+(+x^2-2x-1x+2)115=0
We multiply parentheses
-2x^2+115x^2-230x-115x+230=0
We add all the numbers together, and all the variables
113x^2-345x+230=0
a = 113; b = -345; c = +230;
Δ = b2-4ac
Δ = -3452-4·113·230
Δ = 15065
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-345)-\sqrt{15065}}{2*113}=\frac{345-\sqrt{15065}}{226} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-345)+\sqrt{15065}}{2*113}=\frac{345+\sqrt{15065}}{226} $

See similar equations:

| 48x+54=0 | | -9.1=2.1+v/7 | | -5x+10=-x+38 | | 20−3q=11 | | 2(x+5)+2x=2(2x+2) | | Y=48x+54 | | s+45=63 | | r+36=51 | | j/7-11=5 | | b/5-11=4 | | 7-7x=-5x-29 | | 27+q=34 | | 0=50-(0.7•d) | | 16=v/11 | | 11/4=d/48 | | 4/5•n=18 | | 7x-8=5x=180 | | 6x-2x+11=27 | | X+7+12x-27=123 | | 24x-4=71 | | 8x-7=8x+9 | | -5(2n+4)=30 | | 15+p=29 | | -5(2n+4=30 | | 2x+3x+1=40 | | 3x-39=2x+11 | | 47.1/3.14=x | | x÷4-3=25 | | 3.6x-6.56=8.2 | | 3x-10+90-x=180 | | x/2.1=4/13.5 | | 3y+9=4y-11 |

Equations solver categories